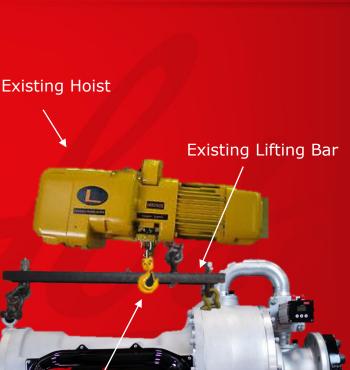


Variable Center of Gravity Lifting System (Formerly Bi-directional Offset Lifting Bar)

Danfoss Turbocor


Instructor - Dr. Gupta Advisor - Dr. Hollis

Team 5

Yoel Bugin Gabriel Omoniyi Luke Leelum Devin Stubbs Coert Maraist

Project Background

- Danfoss Turbocor is the world leader in oilfree centrifugal compressors
- All compressors must be tested prior to distribution for quality control
- Since Chiller 3 was built Turbocor has developed a new line of VTT Compressors that have a greater height than can be installed with the current gantry and hoist system

ENGINEERING TOMORROW

VTT Compressor

Maximum height of hook

DTURBOCOR

Project Description

- A better lifting system must be designed and implemented in order to conveniently install the compressor for testing
- Lifting bar to include:
 - Auto-leveling
 - Adjustable lifting positions
 - 1 Ton load capacity
 - Less than 500lb operating weight
 - OSHA Compliant

Issues with Current Setup

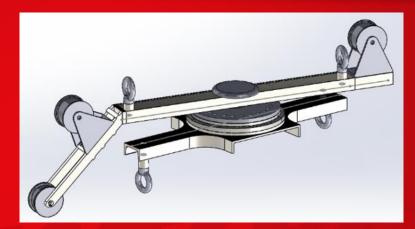
- Current Chiller:
 - Hoist hook lower than
 VTT compressor eyebolt
 - Hoist cannot be used to lift VTT Compressor
 - Manual Workaround
- Current Lifting Bar:
 - Non-adjustable lifting point for variable center of gravity
 - Suboptimal vertical height between lifting points

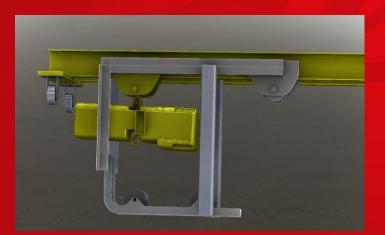
Current Lifting Bar

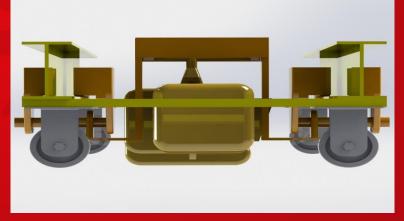
ENGINEERING

TOMORROW

Current Gantry & Hoist




Concept Creation

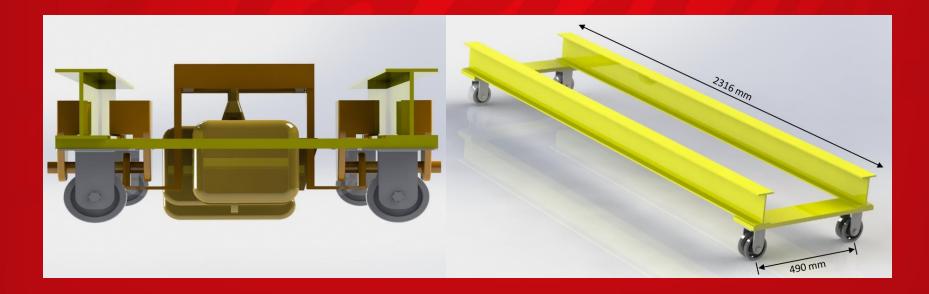

Counterweight lifting bar

Two Points of Lift with Turntable

Redirection of Lift by Pulleys

Redesigned Gantry System

Team 5 – Variable Center of Gravity Lifting System


Decision Matrix

Design	Safety (30%)	Performance (25%)	Cost (20%)	Implementation (15%)	Durability (10%)	Total
Counterweight	2	5	3	6	6	3.95
Two Points of Lift	4	6	3	3	5	4.25
Redirection of Lift	6	9	6	6	7	6.85
Redesigned Gantry & Lifting Bar	9	9	8	8	9	8.05

Concept Solution: Gantry & Trolley

- Redesign gantry with <u>further</u> spaced I-beams •
- Designed trolley to suspend crane hoist between I-beams •
- Increases available lifting height of VTT Compressor •

Concept Solution: Lifting Bar

- Redesigned lifting bar compliments redesigned gantry
- Power screw adjusts point of lift for variable center of gravity
- Adjustable position for lifting hooks
- Minimized vertical distance between lifting points

Final Design

Lifting Bar

- C4x5.4 Channel for increased bending strength
- MISUMI ball screw for lifting point adjustability
 - 5mm lead allows for incremental adjustment

69

- 11 kN static load rating
- 50 mm shorter than current lifting bar

C

Lifting bar final design

Trolley

- Initial design for trolley
- 1/2" steel plate and 1018 cold rolled 3/4" steel rod
- Water jet fabrication
- Welded assembly

Preliminary Load Testing

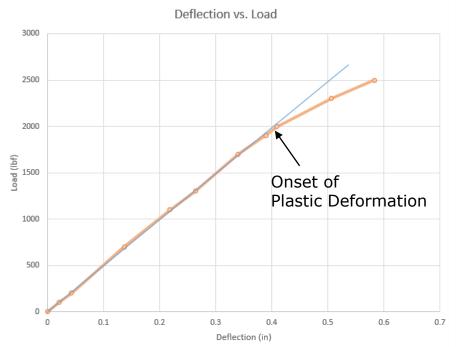
ENGINEERING TOMORROW

- Utilized Civil Engineering Department Strengths of Materials Lab
 - MTS Unit capable of applying 100 kip force
- Gantry and trolley tested at 2500 lb load

Trolley & Gantry Test Configuration

MTS Unit used for testing

Strength of Materials Lab


ENGINEERING TOMORROW

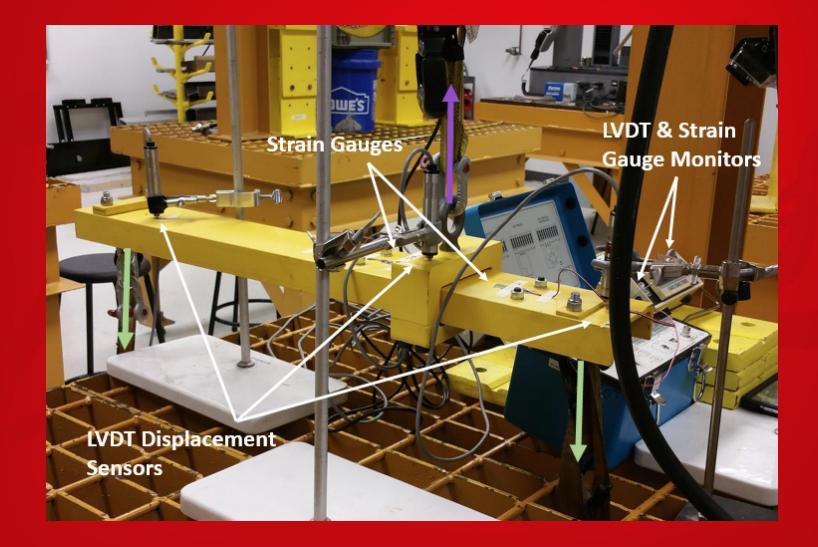
Load Testing Results

Trolley + Gantry under 2500 lb. load

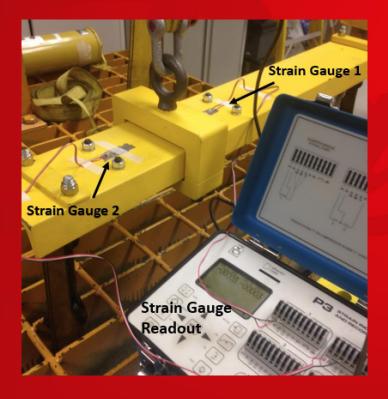
Load vs. Deflection

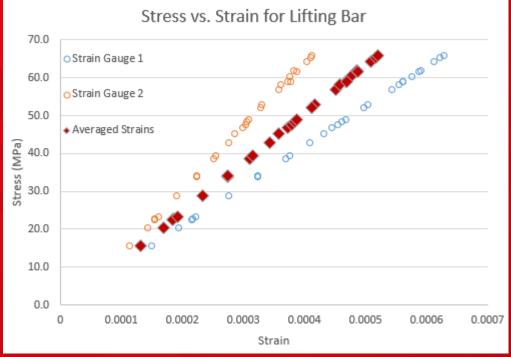
- Original FEA results did not match testing results
- Results call for design revision

Trolley Revision


- Additional gusset support
- Increased height of support bolt location
- Revised Trolley FEA
 - Stress <250 MPa yield stress

Final Load Testing: Lifting Bar




Final Test Results: Lifting Bar

- Test performed 3 times; maximum load at 2700 lbs
- Stress-Strain curve remains in linear, elastic region

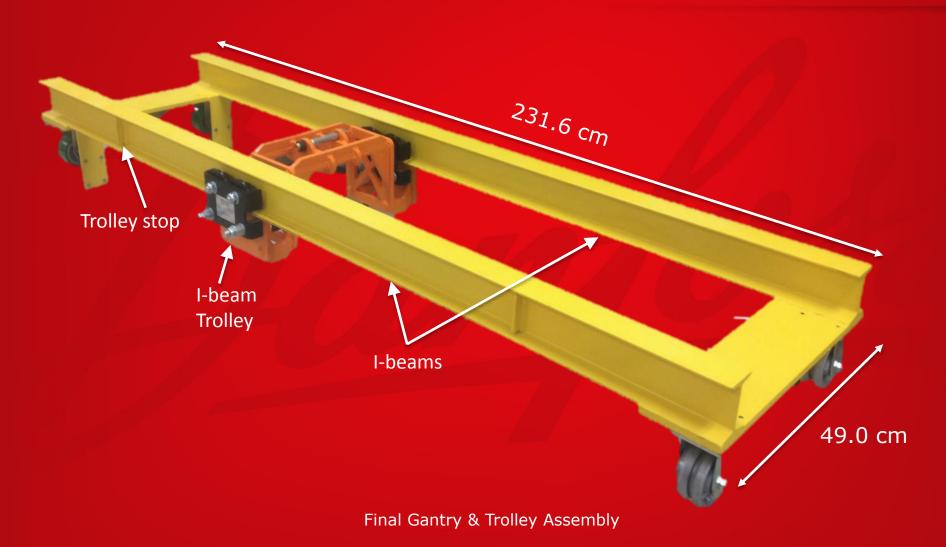
Final Load Testing: Gantry

ENGINEERING TOMORROW

Load Test to 3675 lbs

Team 5 – Variable Center of Gravity Lifting System

Final Test Results: Gantry



- Test performed 3 times; maximum load at 3675 lbs
- Stress-Strain curve remains in linear, elastic region

Final Product

Final Product

Final Lifting Bar

-

Lifting Bar & VTT Compressor

Challenges Faced

- Tight spatial constraints of test room
- Meeting OSHA regulations during design process
- Scheduling of load tests with certified supervisor
- Discrepancy between FEA and real world results
- Load testing results required trolley redesign

Lessons Learned

- Team communication key to success
- Easy to fall behind schedule
- Expectations and reality can't always coincide
- Real world results don't always match FEA
- Always listen to Murphy: what can go wrong will go wrong

Gantt Chart

ENGINEERING TOMORROW

Task Name 👻	% Compl v	January 1	February 1	March 1	April 1
Planning	100%	i i i i i i i i i i i i i i i i i i i	reprodujy 1	Marchiz	
Concept Creation	100%				
Design Proposal	100%				
Procurement and Initial Fabrication	100%				
Inventory Parts and Complete Procurement	100%				
Submit Machinist Approved Drawings	100%				
Fabrication of Components by Team 5	100%				
Fabrication of Components by Turbocor	100%				
Assembly of Components	100%				
Gantry Assembly	100%				
Trolley System Assembly	100%		Ť		
Lifting Bar Assembly	100%			ŤH (
Paint and Safety Warnings	100%				
▲ Testing	33%				
Load Simulation	100%				
Obtain Approval From Turbocor Engineers	0%			l i i	
Implementation in Chiller 3	0%				Ň
Perform VTT Compressor Lift	0%				

Team 5 – Variable Center of Gravity Lifting System

Checklist

- ✓ Increased lifting height of compressor by over 200 mm
- ✓ Confirmed Load Rating of >2000 lb
- ✓ OSHA Compliant
- ✓ Less than 500 lb operating weight
- ✓ Lifting bar adjustable for multiple lifting positions
- Future Work
 Turbocor approval of load testing results
 Onsite implementation at Turbocor

Acknowledgements

Team 5 would like to personally thank:

- Turbocor Liaisons, Kevin Lohman and Bill Bilbow
- Dr. Nikhil Gupta
- Dr. Patrick Hollis
- Dr. Raphael Kampmann
- Jeremy Phillips & James Gillman

Questions?

More information available online at:

http://eng.fsu.edu/me/senior_design/2015/team05